Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Photoemission study of f-electron Heusler compound: UNiSn J.-S. Kang¹, J.-G. Park², K. A. McEwen³, Y. Ōnuki⁴, C. G. Olson⁵, B. I. Min⁶ - ¹ Department of Physics, The Catholic University of Korea, Puchon, Korea - ² Department of Physics, Inha University, Incheon, Korea - ³ Department of Physics and Astronomy, University College London, UK - ⁴ Graduate School of Science, Osaka University, Toyonaka 560, Japan - ⁵ Ames Laboratory, Iowa State University, Ames, Iowa 50011, U.S.A. - ⁶ Department of Physics, POSTECH, Pohang, Korea Using photoemission spectroscopy (PES), the electronic structures of XNiSn (X=Ce, U) have been investigated. The f-electron Heusler compound UNiSn displys an interesting multiple phase transition around 43K, and CeNiSn belongs to the low carrier density f-electron system that opens a gap at low temperature. It is found that the valence-band PES spectra of UNiSn and CeNiSn reveal some common features which are related to the Ce/U d, Ni d, and Sn sp electronic character. The Ni 3d spectrum shows the main peak well below the Fermi level E_F and a very low DOS at E_F in both compounds. We have found that the high-resolution photoemission spectra of both UNiSn and CeNiSn are described well by the V-shaped metallic DOS near E_F , which implies the reduced DOS at E_F and the semi-metallic ground electronic states. Our study suggests that the effect of the hybridization matrix element between the f electron orbitals and the very low Ni 3d DOS at E_F is important in both UNiSn and CeNiSn. The comparison of the LSDA+U calculation to the measured PES spectra reveals the importance of the on-site Coulomb interaction between f electrons.